Home
Class 11
MATHS
Let X=(\ ^(10)C1)^2+2(\ ^(10)C2)^2+3(\ ^...

Let `X=(\ ^(10)C_1)^2+2(\ ^(10)C_2)^2+3(\ ^(10)C_3)^2+\ ddot\ +10(\ ^(10)C_(10))^2` , where `\ ^(10)C_r` , `r in {1,\ 2,\ ddot,\ 10}` denote binomial coefficients. Then, the value of `1/(1430)\ X` is _________.

Text Solution

Verified by Experts

The correct Answer is:
646
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -1|2 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -2|3 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-M)|20 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let X=(^(10)C_(1))^(2)+2(^(10)C_(2))^(2)+3(^(10)C_(3))^(2)+...+10(^(10)C_(10))^(2) where ^(10)C_(r),r in{1,2,;10} denote binomial coefficients.Then,the value of (1)/(1430)X is

"^10(C_0)^2 + "^10(C_1)^2 + "^10(C_2)^2 + ...... + ( "^10C_9)^2 + ( "^10C_10)^2=

^10(C_(0))^(2)-^(10)(C_(1))^(2)+^(10)(C_(2))^(2)-......-(^(10)C_(9))^(2)+(^(10)C_(10))^(2)=

Evaluate ""^(10)C_1 + ""^(10)C_2 + ""^(10)C_3 + ………+""^10C_10

Find the sum ^10C_(1)+^(10)C_(3)+^(10)C_(5)+^(10)C_(7)+^(10)C_(9)

Prove that ^10C_(1)(x-1)^(2)-^(10)C_(2)(x-2)^(2)+^(10)C_(3)(x-3)^(2)+...-^(10)C_(10)(x-10)^(2)=

Evaluate : 2^(10)C_(0)+(2^(2).^(10)C_(1))/(2)+(2^(3).^(10)C_(2))/(3)+ . . .+(2^(11).^(10)C_(10))/(11)

" 6.Find the value of "^(10)C_(5)+2*^(10)C_(4)+^(10)C_(3)