Home
Class 11
MATHS
In the expansion of (1/2 + 2x/3)^n when ...

In the expansion of `(1/2 + 2x/3)^n` when `x=-1/2` ,it is known that `3^(rd)` term is the greatest term Find the possible integral values of n .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the binomial expansion of \((\frac{1}{2} + \frac{2x}{3})^n\) when \(x = -\frac{1}{2}\). We are tasked with finding the integral values of \(n\) such that the third term is the greatest term in the expansion. ### Step 1: Substitute the value of \(x\) Substituting \(x = -\frac{1}{2}\) into the expression gives us: \[ \left(\frac{1}{2} + \frac{2(-\frac{1}{2})}{3}\right)^n = \left(\frac{1}{2} - \frac{1}{3}\right)^n = \left(\frac{3}{6} - \frac{2}{6}\right)^n = \left(\frac{1}{6}\right)^n \] ### Step 2: Identify the terms in the binomial expansion The \(r\)-th term in the binomial expansion of \((a + b)^n\) is given by: \[ T_r = \binom{n}{r-1} a^{n-(r-1)} b^{r-1} \] In our case, \(a = \frac{1}{2}\) and \(b = \frac{2(-\frac{1}{2})}{3} = -\frac{1}{3}\). Thus, the \(r\)-th term can be expressed as: \[ T_r = \binom{n}{r-1} \left(\frac{1}{2}\right)^{n-(r-1)} \left(-\frac{1}{3}\right)^{r-1} \] ### Step 3: Find the third term \(T_3\) and the second term \(T_2\) The third term \(T_3\) is: \[ T_3 = \binom{n}{2} \left(\frac{1}{2}\right)^{n-2} \left(-\frac{1}{3}\right)^{2} \] Calculating this gives: \[ T_3 = \binom{n}{2} \left(\frac{1}{2}\right)^{n-2} \left(\frac{1}{9}\right) \] The second term \(T_2\) is: \[ T_2 = \binom{n}{1} \left(\frac{1}{2}\right)^{n-1} \left(-\frac{1}{3}\right)^{1} \] Calculating this gives: \[ T_2 = n \left(\frac{1}{2}\right)^{n-1} \left(-\frac{1}{3}\right) \] ### Step 4: Set up the inequality for the greatest term Since \(T_3\) is the greatest term, we need to satisfy the following conditions: 1. \(T_3 \geq T_2\) 2. \(T_3 \geq T_4\) First, we will compare \(T_3\) and \(T_2\): \[ T_3 \geq T_2 \implies \binom{n}{2} \left(\frac{1}{2}\right)^{n-2} \cdot \frac{1}{9} \geq n \left(\frac{1}{2}\right)^{n-1} \cdot \left(-\frac{1}{3}\right) \] ### Step 5: Simplify the inequality This simplifies to: \[ \frac{n(n-1)}{2} \cdot \frac{1}{9} \geq n \cdot \frac{1}{2} \cdot \frac{1}{3} \] Cancelling \(n\) (assuming \(n \neq 0\)) gives: \[ \frac{(n-1)}{2} \cdot \frac{1}{9} \geq \frac{1}{6} \] Multiplying through by 18 gives: \[ (n-1) \geq 2 \implies n \geq 3 \] ### Step 6: Compare \(T_3\) and \(T_4\) Next, we compare \(T_3\) and \(T_4\): \[ T_4 \leq T_3 \implies \binom{n}{3} \left(\frac{1}{2}\right)^{n-3} \cdot \left(-\frac{1}{3}\right)^{3} \leq \binom{n}{2} \left(\frac{1}{2}\right)^{n-2} \cdot \left(-\frac{1}{3}\right)^{2} \] This simplifies to: \[ \frac{n(n-1)(n-2)}{6} \cdot \frac{1}{27} \leq \frac{n(n-1)}{2} \cdot \frac{1}{9} \] Cancelling \(n(n-1)\) (assuming \(n > 1\)) gives: \[ \frac{(n-2)}{6} \cdot \frac{1}{27} \leq \frac{1}{18} \] Multiplying through by 162 gives: \[ n-2 \leq 9 \implies n \leq 11 \] ### Conclusion: Integral values of \(n\) Combining the inequalities \(3 \leq n \leq 11\), the possible integral values of \(n\) are: \[ n = 3, 4, 5, 6, 7, 8, 9, 10, 11 \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -4|1 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -5|1 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -2|3 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

In the expansion of (frac{3}{2}+frac{x}{3})^n when x=frac{1}{2} , it is know that the 6th term is the greatest term. Find the possible positive integral values of n.

If 6^(th) term in the expansion of ((3)/(2)+(x)/(3))^(n) is numerically greatest, when x=3 , then the sum of possible integral values of 'n' is

In the expansion of (2-3x)^(-1), the 3 rd term is

Find the greatest term in the expansion of (a+x)^13, when a =5, x=2

n th term in the expansion of (x+(1)/(x))^(2n)

Numerically the greatest term in the expansion of (2-3x)^(7) when x=1 is

Find the greatest term in the expansion (2+3x)^(10), when x=(3)/(5)

Statement-I: In the expansion of (1+x)^(n) ifcoefficient of 3st and 32^(nd) terms are equal then n=61 Statement-II : Middle term in the expansion of (1+x)^(n) has greatest coefficient.

Find the greatest term in the expansion of (7-5x)^(11) when x=(2)/(3)