Home
Class 11
PHYSICS
A particle is moving in a circular path ...

A particle is moving in a circular path of radius a under the action of an attractive potential `U=-k/(2r^2)`. Its total energy is

A

zero

B

`-3/2 k/(a^2)`

C

`-k/(4a^2)`

D

`k/(2a^2)`

Text Solution

Verified by Experts

The correct Answer is:
A

`F=-(dU)/(dr)=-k/(r^3)`
This force provides the required centripetal force for circular motion of the particle.
`therefore (mv^2)/r=k/(r^3)`
`or, mv^2=k/(r^2) or, 1/2 mv^2 =k/(2r^2)`
So, kinetic energy `=k/(2r^2)`
Total energy of the particle =kinetic energy + potential energy
`=k/(2r^2) -k/(2r^2)=0`
Promotional Banner

Topper's Solved these Questions

  • WORK AND ENERGY

    CHHAYA PUBLICATION|Exercise EXAMINATION ARCHIVE WITH SOLUTIONS (AIPMT)|3 Videos
  • WORK AND ENERGY

    CHHAYA PUBLICATION|Exercise EXAMINATION ARCHIVE WITH SOLUTIONS (NEET)|7 Videos
  • WORK AND ENERGY

    CHHAYA PUBLICATION|Exercise EXAMINATION ARCHIVE WITH SOLUTIONS (WBJEE)|3 Videos
  • WBCHSE QUESTION PAPER -2019

    CHHAYA PUBLICATION|Exercise SECTION - II ( GROUP -D)|10 Videos

Similar Questions

Explore conceptually related problems

A particle is moving in a circular path of radius a under the action of an attraction potential U = - (k)/(2r^(2)) . Its total energy is

A particle of mass m is rotated in a circular path of radius r under the influence of a force F=-k/(r^2) , where k is a constant. Find the total energy of the particle.

A particle of mass m is rotated in a circular path of radius r under the influence of a force F = - k/r^2 .. where k is a constant. Find the total energy of the particle.

A particle is moving in a circular path of radius r with constant speed. Due to change in the direction of motion of the particle continously, the velocity of the particle is changing . But the kinetic energy of the particle remains the same. Explain why ?

A particle is moving uniformly in a circular path of radius r. When it moves through an angular displacement theta , then the magnitude of the corresponding linear displacement will be

An alpha -particle moves in a circular path of radius 0.83 cm in the presence of a magnetic field of 0.25 Wb//m^(2) . What is the de Broglie wavelength associated with the particle?