Home
Class 11
PHYSICS
Statement I : When a body of mass M lose...

Statement I : When a body of mass M loses heat, the time rate of fall of temperature for given amount of loss of heat is inversely proportional to mass.
Statement II : `DeltaQ = Ms DeltaT` where, `DeltaQ=` amount of heat, s = specific heat and `DeltaT=` decrease in temperature.

A

Statement I is true, statement II is true , statement II is a correct explanation for statement I.

B

Statement I is true, statement II is true , statement II is not a correct explanation for statement I.

C

Statement I is true, statement II is false.

D

Statement I is false, statement II is true.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CALORIMETRY

    CHHAYA PUBLICATION|Exercise ENTRANCE CORNER (Multiple correct answers type)|3 Videos
  • CALORIMETRY

    CHHAYA PUBLICATION|Exercise ENTRANCE CORNER (Matrix match type)|1 Videos
  • CALORIMETRY

    CHHAYA PUBLICATION|Exercise Hots Numerical Problems|14 Videos
  • CIRCULAR MOTION

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|11 Videos

Similar Questions

Explore conceptually related problems

The amount of heat required to change the temperature of unit mass of the substance by one unit is called

If two bodies of equal mass but of different materials are supplied equal amounts of heat, which one will have higher irse in temperature?

Statement I: For an ideal gas at constant temperatures the product of the pressure and the volume is constant. Statement II: The mean square velocity of the molecules is inversely proportional of mass.

This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements. Statement - I : Rate of diffusion of N_2O and CO_2 are same at constant temperature. Statement -II: Rate of diffusion of a gas is inversely proportional to square root of molecular mass at constant temperature.

For a body of mass m and specific heat capacity s, how much heat is required to increase its temperature by t?

Statement I : The specific heat of a gas in an adiabatic process is zero but it is infinite in an isothermal process. Statement II : Molar specific heat of a gas is directly proportional to heat exchanged with the system and inversely proportional to change in temperature.

A liquid of mass M and specific heat S is at a temperature 2t. If another liquid of thermal capacity 1.5 times, at a tempera-ture of (t)/(3) is added to it, the resultant temperature will be

A body of mass 1 kg falls to the ground from a height of 1km. If the entire amount of energy is converted into heat , find out the amount of heat produced. (J = 4 cdot 1 xx 10^(7) erg cdot cal^(-1)) .