Home
Class 12
MATHS
int(0)^(pi//4)(e^(tanx))/(cos^(2)x)dx=...

`int_(0)^(pi//4)(e^(tanx))/(cos^(2)x)dx=`

A

e-1

B

`e^(-1)-1`

C

`e^(-1)+1`

D

`e^(-2)-1`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-4)|8 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int(tanx)/(1+cos^(2)x)dx

int_(0)^(pi//2)log(tanx)dx=

int_(0)^(pi//4)log(1+tanx)dx=

int_(0)^(pi/4)(cos^(2)x)/(cos^(2)x+4sin^(2)x)dx=

Show that int_(0)^(pi//4)(dx)/(cos^(4)x - cos^(2)x sin^(2) x + sin^(4)x) = (pi)/(2)

int_(0)^(pi)(tanx)/(secx+cosx)dx=

int_(0)^(pi) (tan x)/(sec x + cos x) dx=