Home
Class 12
MATHS
int(0)^(1)(dx)/(e^(x)+e^(-x))=...

`int_(0)^(1)(dx)/(e^(x)+e^(-x))=`

A

`Tan^(-1)e-pi//4`

B

`Tan^(-1)e+pi//4`

C

`Tan^(-1)e-pi//2`

D

none

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-4)|8 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (x-1) e^(-x) dx=

int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx=

int_(0)^(1)e^(x)(x^(x)+1)^(3)dx=

int(dx)/((e^(x)+e^(-x))^(2))=

int_(0)^(1)(1+e^(-x))dx=

int_(0)^(oo)[(2)/(e^(x))]dx=

int(1)/(e^(x)+e^(-x))dx

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for x in [0, a] . Then int_(0)^(a)(dx)/(1+e^(f(x))) is equal to

int (e^(x)+e^(-x))/((e^(x)-e^(-x)) log sin hx)dx=

int_(0)^(1) x e^(-x^(2))dx