Home
Class 12
MATHS
int(0)^(pi)(tanx)/(secx+cosx)dx=...

`int_(0)^(pi)(tanx)/(secx+cosx)dx=`

A

`pi//3`

B

`pi//4`

C

`pi//2`

D

`2pi`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-4)|8 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(xtanx)/(secx+cosx)dx=

int_(0)^(pi)(xtanx)/(secx+tanx)dx=

int_(0)^(pi)(1)/(3+2sinx+cosx)dx=

Show that int_(0)^(pi//2) (x)/(sinx+cosx)dx=(pi)/(2sqrt(2))log (sqrt(2)+1) .

int(tanx)/(1+cosx)dx=

int_(0)^(pi//2)(secx)/(secx+cosecx)dx=

int_(0)^(pi//2)log(tanx+cotx)dx=

int_(0)^(pi//2)(cotx)/(tanx+cotx)dx=

int_(0)^(pi//4)(e^(tanx))/(cos^(2)x)dx=