Home
Class 12
MATHS
2 int(0)^(1) (tan^(-1)x)/(x) dx=...

`2 int_(0)^(1) (tan^(-1)x)/(x) dx=`

A

`(pi^(2))/(6)-(pi)/(3)+(1)/(2)log2`

B

`(pi^(2))/(16)+(pi)/(4)+(1)/(2)log2`

C

`(pi^(2))/(16)-(pi)/(4)+(1)/(2)log2`

D

none

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-4)|8 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

Evaluate the integral int_(0)^(1) x tan^(-1)x dx

Evaluate the following integrals (v) int_(0)^(1)x tan^(-1) x dx

If 2 int_(0)^(1) tan^(-1) x dx = int_(0)^(1) cot^(-1) (1- x+x^(2))dx , then int_(0)^(1) tan^(-1) (1-x+x^(2))dx is equal to

int_(0)^(1) ((tan^(-1)x)^(3))/(1+x^(2))dx=

int_(0)^(1) Tan^(-1) ((2x-1)/(1+x-x^(2)))dx=