Home
Class 12
MATHS
If I(1)=int(e)^(e^(2))(dx)/(logx)andI(2)...

If `I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx,` then

A

`I_(1)=I_(2)`

B

`2I_(1)=I_(2)`

C

`I_(1)=2I_(2)`

D

none

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-4)|8 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

int(x+1)^(2)e^(x)dx=

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

int_(0)^(1)(1+e^(-x))dx=

int_(1)^(e)((logx)^(3))/(x)dx=

int(1)/(e^(x)+e^(-x))dx

int_(e^(-1))^(e^(2))|(logx)/(x)|dx=

int (1)/((e^(x)-1)^(2))dx=

int_(1)^(e)(ln x)/(x^(2))dx=