Home
Class 12
MATHS
I=int(0)^(1)e^(x^(2))dx satisfies the in...

`I=int_(0)^(1)e^(x^(2))dx` satisfies the inequality

A

`0ltllt1`

B

`-1lelle1`

C

`1leIlee`

D

none

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x e^(-x^(2))dx

I= int_(0)^(1)e^(x^(2))dx rArr

int_(0)^(1)(1+e^(-x))dx=

int_(0)^(2) [x^(2)-1]dx=

int(1)/(e^(x)+e^(-x))dx

int_(0)^(1000)e^(x-[x])dx=

int_(0)^(1) (x^2)(1+x^2) dx =

If I=int_(0)^(1)sqrt(1+x^(3))dx then

int_(0)^(1)e^(x)(x^(x)+1)^(3)dx=

int(x+1)^(2)e^(x)dx=