Home
Class 12
MATHS
int(0)^(oo)(logx)/(1+x^(2))dx=...

`int_(0)^(oo)(logx)/(1+x^(2))dx=`

A

`oo`

B

`pi//4`

C

0

D

none

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(oo)(xlogx)/((1+x^(2))^(2))dx is

If [x] denotes the greatest integer less than or equal to x then int_(1)^(oo) [(1)/(1+x^(2))]dx=

int_(0)^(oo)(log(1+x^(2)))/(1+x^(2))dx=

int_(0)^(oo)(1)/(1+x)^(4)dx=

int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx=

int_(0)^(oo) (dx)/((1+x^(2))^(4))=

int_(0)^(oo) (ln x)/(x^(2)+a^(2))dx=

int_(0)^(oo) (x^(3))/((1+x^(2))^(9//2))dx=

If int_(0)^(oo)(dx)/((x^(2)+4)(x^(2)+9))=kpi then the value of k is