Home
Class 12
MATHS
int(0)^(pi)(xtanx)/(secx+cosx)dx=...

`int_(0)^(pi)(xtanx)/(secx+cosx)dx=`

A

`pi^(2)//4`

B

`pi^(2)//3`

C

`pi^(2)//2`

D

`pi^(2)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(tanx)/(secx+cosx)dx=

int_(0)^(pi)(xtanx)/(secx+tanx)dx=

int_(0)^(pi)(1)/(3+2sinx+cosx)dx=

int_(0)^(pi//2)(secx)/(secx+cosecx)dx=

Show that int_(0)^(pi//2) (x)/(sinx+cosx)dx=(pi)/(2sqrt(2))log (sqrt(2)+1) .

int(tanx)/(1+cosx)dx=

int(sinx)/(sinx-cosx)dx=

int_(0)^(pi//2)log(tanx)dx=