Home
Class 12
MATHS
int(0)^(pi//2)log(sinx)dx=...

`int_(0)^(pi//2)log(sinx)dx=`

A

`pilog2`

B

`-pilog2`

C

`-(pi)/(2)log2`

D

`(pi)/(2)log2`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)log(tanx)dx=

int_(0)^(pi//2)log(cosx)dx=

Show that int_(0)^(pi//2) log (sin x) dx = - pi/2 log 2

If int_(0)^(pi//2) ln (sin x) dx= - pi/2 ln 2 then int_(0)^(pi) ln (1+ cos x) dx=

int_(0)^(pi//4)log(1+tanx)dx=

Which of the following are false : Statement-I : ( int_(0)^(pi//2) (sqrt(cos x))/(sqrt(cos x + sqrt(sin x)))= pi/2 Statement-II : int_(0)^(pi//2) log(tan x) dx=1 Statement-III: int_(0)^(pi//2) log sin x dx = - pi log 2

If int_(0)^(pi)xf(sinx)dx=Aint_(0)^(pi//2)(sinx)dx, then A is

int_(0)^(pi//2)(sinx)/(x)dx lies between

Evaluate the integral int_(0)^(pi//4) log(1+tanx)dx