Home
Class 12
MATHS
If int(0)^(pi)xf(sinx)dx=Aint(0)^(pi//2)...

If `int_(0)^(pi)xf(sinx)dx=Aint_(0)^(pi//2)(sinx)dx,` then A is

A

0

B

`pi2`

C

`pi//4`

D

`pi`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)log(sinx)dx=

int_(0)^(pi)(1)/(1+sinx)dx=

int_(0)^(pi//2)log(tanx)dx=

int_(0)^(pi//2)log(cosx)dx=

int_(0)^(pi//2)(1)/(2+3sinx)dx=

int_(0)^(pi) sin^(7) x dx=

int_(0)^(pi//2) x^(2)sin x dx=

int_(0)^(pi)[cosx]dx=

int_(0)^(pi//2)(cosx)/(1+sinx)dx=

int_(0)^(pi//2)(sinx)/(x)dx lies between