Home
Class 12
MATHS
If f(x) is intergrable on [0,a] then int...

If f(x) is intergrable on [0,a] then `int_(0)^(a)(f(x))/(f(x)+f(a-x))dx=`

A

0

B

1

C

a

D

a/2

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

int_(0)^(a) (f(x)+f(-x))dx=

int (f'(x))/(f(x)log f(x))dx=

int_(0)^(alpha//3)(f(x))/(f(x)+f((alpha-3x)/(3)))dx=

int (f'(x))/(sqrt(f(x)))dx=

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for x in [0, a] . Then int_(0)^(a)(dx)/(1+e^(f(x))) is equal to

A:int_(0)^(100pi)sqrt(1-cos2x)dx=200sqrt2 . If f(x) is a periodic function with period a then int_(0)^(na)f(x)dx=nint_(0)^(a)f(x)dx

If f(x) satisfies Rolle's theorem for f(x) in [a,b] then int_(a)^(b) f'(x) dx =

int e^(ax)[a f(x)+f' (x)]dx=