Home
Class 12
MATHS
Let l=int(0)^(1)(sinx)/(sqrtx)dxandI=int...

Let `l=int_(0)^(1)(sinx)/(sqrtx)dxandI=int_(0)^(1)(cosx)/(sqrtx)dx`. Then which one of the following is true?

A

`Ilt(2)/(3)andJlt2`

B

`Ilt(2)/(3)and2ltJ`

C

`Igt(2)/(3)andJlt2`

D

`Igt(2)/(3)andJgt2`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(x)/(1+sqrtx)dx=

Let I = int_(0)^(1) (sin x)/(sqrt(x)) dx and J= int_(0)^(1) (cos x)/(sqrt(x))dx which one of the following is true

int_(0)^(pi//2)(cosx)/(1+sinx)dx=

int_(0)^(pi)(1)/(1+sinx)dx=

int_(0)^(pi)xf(sinx)dx=

int_(0)^(pi)(1)/(3+2sinx+cosx)dx=

int_(0)^(pi)[cosx]dx=

int_(0)^(pi)(tanx)/(secx+cosx)dx=

int_(0)^(pi//2)log(sinx)dx=