Home
Class 12
MATHS
Let f(x) be a function satisfying f'(x)=...

Let f(x) be a function satisfying `f'(x)=f(x)` with `f(0)=1andg(x)` be a function that satisfies `f(x)+g(x)=x^(2)`. Then the value of the integral `int_(0)^(1)f(x)g(x)dx,` is

A

`e+(e^(2))/(2)-(3)/(2)`

B

`e-(e^(2))/(2)-(3)/(2)`

C

`e+(e^(2))/(2)+(5)/(2)`

D

`e-(e^(2))/(2)-(5)/(2)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are continuous functions satisfysing f(x)=f(a-x)andg(x)+g(a-x)=2 then int_(0)^(a)f(x)g(x)dx=

If the function f(x) = x^3 + e^(x/2) and g(x) =f^-1(x) , then the value of g'(1) is

The number of linear functions of f satisfying f(x+f(x))=x+f(x) for all x in R is

If f (x) is a polynomial function satisfying f(x).f((1)/(x))=f(x)+f((1)/(x)) and f(4) =257 then f(3) =

The number of real linear functions f(x) satisfying f(f(x)) = x + f(x) is

If the function f(x) satisfies lim_(xrarr1)(f(x)-2)/(x^(2)-1)=pi , evaluate lim_(xrarr1)f(x) .