Home
Class 12
MATHS
The function F(x)=int(0)^(pi)log((1-x)/(...

The function `F(x)=int_(0)^(pi)log((1-x)/(1+x))dx` is

A

an even function

B

an odd function

C

a periodic function

D

none

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

The functions f(x) = int _0^(1) log_e ((1-x)/(1+x)) dx is

int_(-1)^(1)log((2+x)/(2-x))dx=

int_(0)^(pi) (x)/(1+cos^(2)x)dx=

int_(0)^(oo)(log(1+x^(2)))/(1+x^(2))dx=

int_(0)^(2pi) ln (1+Cos x) dx=

f(x)= int_(0)^(x) ln ((1-t)/(1+t))dt rArr