Home
Class 12
MATHS
If I(1) = int(0)^(1) 2^(x^(2))dx, I(2) =...

If `I_(1) = int_(0)^(1) 2^(x^(2))dx, I_(2) = int_(0)^(1) 2^(x^(3))dx`, `I_(3) = int_(1)^(2) 2^(x^(2))dx, I_(4)=int_(1)^(2) 2^(x^(3))dx` then

A

`I_(1)gtI_(2)`

B

`I_(2)gtI_(1)`

C

`I_(3)gtI_(4)`

D

none

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|91 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(3)(2+x^(2))dx=

I= int_(0)^(1)e^(x^(2))dx rArr

int_(0)^(2) [x^(2)-1]dx=

int_(0)^(1)(x)/(1+x^(2))dx=

int_(0)^(1) (x^2)(1+x^2) dx =

If I=int_(0)^(1)sqrt(1+x^(3))dx then

int_(2)^(3) (2x)/(1+x^(2))dx

If I_(1)= int_(0)^(3pi) f( sin^(2) x)dx and I_(2)= int_(0)^(pi) f(sin^(2)x)dx then

int_(0)^(2)(3x^(2)+4x+3)dx=

int_(-1)^(1)(x-[2x])dx=