Home
Class 12
MATHS
If f is an odd function then int(-1)^(1)...

If f is an odd function then `int_(-1)^(1)[|x|+f(x)cosx]dx=`

A

0

B

1

C

2

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1E|94 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

If f(x) is an even function then int_(-pi)^(pi)f(x)sinnxdx=

If f is every where continuous function then 1/c int_(ac)^(bc) f(x/c) dx=

A:int_(0)^(100pi)sqrt(1-cos2x)dx=200sqrt2 . If f(x) is a periodic function with period a then int_(0)^(na)f(x)dx=nint_(0)^(a)f(x)dx

Let f:R to R be a continuous function and f(x)=f(2x) is true AA x in R . If f(1) = 3 then the value of int_(-1)^(1) f(f(x))dx=

int_(0)^(a) (f(x)+f(-x))dx=

int (x)/(1+cosx)dx=

If f(x)=(1+ tan x) [1+ tan(pi/4 - x)] and g(x) is a function with domain R, then int_(0)^(1) x^(3) g o f (x) dx=

f(x) is an odd polynomial function. Then cos [f(x)] is

If f(x) is an even function and g(x) is an odd function and satisfies the relation x^(2)f(x)-2f(1/x) = g(x) then

If f(x)=Ax^(2) +Bx satisfies the conditions f^(1)(1)=8 and int_(0)^(1) f(x)dx=8/3 , then