Home
Class 12
MATHS
int(0)^(2pi)(1)/(1+e^(sinx))dx=...

`int_(0)^(2pi)(1)/(1+e^(sinx))dx=`

A

`pi`

B

0

C

`2pi`

D

`pi//2`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1E|94 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2pi)(1)/(e^(sin x) +1) dx=

int_(0)^(pi)(1)/(1+3^(cosx))dx=

int_(0)^(pi)(1)/(1+sinx)dx=

int_(0)^(pi//2)(1)/(2+3sinx)dx=

int_(0)^(pi//2)(cosx)/(1+sinx)dx=

int_(0)^(pi)(1)/(3+2sinx+cosx)dx=

int_(0)^(pi) (x)/(1+cos^(2)x)dx=

Match the following. {:(I,int_(0)^(pi//2)sqrt(1-cos2x)dx=,(a),2),(II,int_(0)^(pi//2)sqrt(1+sin2x)dx=,(b),sqrt2),(III,int_(0)^(1)(x)/(1+x^(2))dx=,(c),log2),(IV,int_(0)^(pi//2)(cosx)/(1+sinx)dx=,(d),(1)/(2)log2):}

Find int_(0)^(pi) (x.sinx)/(1+sinx)dx