Home
Class 12
MATHS
int(0)^(oo)[(2)/(e^(x))]dx=...

`int_(0)^(oo)[(2)/(e^(x))]dx=`

A

`log_(e)2`

B

`e^(2)`

C

0

D

`2//e`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1E|94 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(oo)[2e^(-x)]dx

int_(0)^(oo)(1)/(1+x)^(4)dx=

If [x] denotes the greatest integer less than or equal to x then int_(1)^(oo) [(1)/(1+x^(2))]dx=

int_(0)^(oo)(logx)/(1+x^(2))dx=

int_(0)^(1)(1+e^(-x))dx=

int_(0)^(1) (x-1) e^(-x) dx=

If int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2)," then " int_(0)^(oo)e^(-ax^(2))dx,agt0 is

If int_(0)^(oo)(dx)/((x^(2)+4)(x^(2)+9))=kpi then the value of k is

For a gt 1, b gt 1 , the value of int_(0)^(oo) (a^(-x)-b^(-x))dx=