Home
Class 12
MATHS
int(0)^(pi)[cosx]dx=...

`int_(0)^(pi)[cosx]dx=`

A

`pi//2`

B

0

C

`pi`

D

`-pi//2`

Text Solution

Verified by Experts

The correct Answer is:
d
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D|32 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1E|94 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|116 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals int_(0)^(2pi) cos x dx

int_(0)^(pi)xf(sinx)dx=

Evaluate int_(0)^(pi) sinx dx

If f(x)=|{:(cosx,1,0),(1,2cosx,1),(0,1,2cosx):}|" then "int_(0)^(pi//2)f(x)dx=

int_(0)^(pi//2)log(cosx)dx=

Evaluate the integral int_(0)^(pi) (1+cosx)^(3) dx

int_(0)^(pi//2)(cosx)/(1+sinx)dx=

int_(0)^(pi//2)(cosx-sinx)e^(x)dx=

int_(0)^(pi//2)(5+4cosx)/((4+5cosx)^(2))dx=