Home
Class 12
MATHS
ABCDE is a pentagon. If the sum of the v...

ABCDE is a pentagon. If the sum of the vectors
`bar(AB),bar(AE), bar(BC), bar(DC), bar(ED), bar(AC)` is `lambda bar(AC)` then find the value of `lambda`.

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Topper's Solved these Questions

  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise 2 D (SAQ)|13 Videos
  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise 3 D (MISCELLANEOUS)|14 Videos
  • APPLICATIONS OF DERIVATIVES

    SRISIRI PUBLICATION|Exercise 10.5 MAXIMA AND MINIMA - VSAQ . SAQ (SPQ)|1 Videos

Similar Questions

Explore conceptually related problems

ABCDE is a pentagon then bar(AB)+bar(AE)+bar(BC)+bar(DC)+bar(ED)+bar(AC)=

ABCDEF is a regular hexagon. If bar(AB)+bar(AE)+bar(BC)+bar(DC)+bar(ED)+bar(AC)=lambdabar(AC)" then "lambda=

If ABCD is a parallelogram such that bar(AB)=bar(a), bar(BC)=bar(b)" then "bar(AC), bar(BD) are

ABCDEF is a regualar hexagon whose centre is O. Then bar(AB)+bar(AC)+bar(AD)+bar(AE)+bar(AF) is

ABC is an equitateral triangle of side 'a'. Then bar(AB).bar(BC)+bar(BC).bar(CA)+bar(CA).bar(AB) =

ABCDEF is a regular hexagon. If bar(AB)=bar(a), bar(BC)=bar(b)" then "bar(CE)=

ABCDEF is a regular hexagon. If bar(AB)=bar(a), bar(BC)=bar(b)" then "bar(FA)=

If the position vectors of the points A,B,C are -2bar(i)+bar(j)-bar(k), -4bar(i)+2bar(j)+2bar(k), 6bar(i)-3bar(j)-13bar(k) respectively and bar(AB) = lambda bar(AC) then find the value of lambda .