Home
Class 12
MATHS
The points O, A, B, X and Y are such tha...

The points O, A, B, X and Y are such that `bar(OA)=bar(a), bar(OB)=bar(b), bar(OX)=3bar(a) and bar(OY)=3bar(b)," find "bar(BX) and bar(AY)` in terms of `bar(a) and bar(b)`. Further if the point p divides `bar(AY)` in the ratio 1 : 3 then express `bar(BP)` interms of `bar(a) and bar(b)`.

Text Solution

Verified by Experts

The correct Answer is:
`(3bar(a)-bar(b))/(4)`
Promotional Banner

Topper's Solved these Questions

  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise SPQ|7 Videos
  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise 2 D (SAQ)|13 Videos
  • APPLICATIONS OF DERIVATIVES

    SRISIRI PUBLICATION|Exercise 10.5 MAXIMA AND MINIMA - VSAQ . SAQ (SPQ)|1 Videos

Similar Questions

Explore conceptually related problems

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .

Prove that bar(a)x[bar(a)x(bar(a) x bar(b))] = (bar(a).bar(a))(bar(b)xbar(a)) .

Show that (bar(a)+bar(b)) . [(bar(b)+bar(c)) xx (bar(c )+bar(a))] = 2[bar(a)bar(b)bar(c )] .

Let bar(a)=bar(i)+2bar(j)+3bar(k)andbar(b)=3bar(i)+bar(j) . . Find a unit vector in the direction of bar(a)+bar(b)

If bar(a)=bar(i)+bar(j)+bar(k) and bar(b)=2bar(i)-3bar(j)-bar(k) , find the unit vector in the direction of bar(a)+bar(b) .

Let bar(a) = bar(i)+2bar(j)+3bar(k) and bar(b) = 3bar(i)+bar(j) . Find the unit vector in the direction of bar(a)+bar(b) .

Show that bar(a)=bar(i)+2bar(j)+bar(k), bar(b)=2bar(i)+bar(j)+3bar(k) and bar(c)=bar(i)+bar(k) are linearly independent.