Home
Class 12
MATHS
Let bar(a)=4bar(i)+5bar(j)-bar(k),bar(b)...

Let `bar(a)=4bar(i)+5bar(j)-bar(k),bar(b)-bar(i)-4bar(j)+5bar(k)andbar(c)=3bar(i)+bar(j)-bar(k)` . Find the vector which is perpendicular to both `bar(a)andbar(b)andbar(alpha).bar(c)=21`

Text Solution

Verified by Experts

The correct Answer is:
:.bar alpha=21(1/3)(bari-barj-bark)=7bari-7barj-7bark`.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    SRISIRI PUBLICATION|Exercise SPQ|15 Videos
  • PRODUCT OF VECTORS

    SRISIRI PUBLICATION|Exercise 2 D (VSAQ, SAQ,LAQ)|26 Videos
  • PRACTICE MODEL PAPER-8

    SRISIRI PUBLICATION|Exercise SECTION-C|7 Videos
  • PROPERTIES OF TRIANGLES

    SRISIRI PUBLICATION|Exercise LAQ ,SAQ,VSAQ (2DHARDQ) (3DMIS.Q)|44 Videos

Similar Questions

Explore conceptually related problems

If bar(a)=2bar(i)-3bar(j)+5bar(k),bar(b)=-bar(i)+4bar(j)+2bar(k) , then find (bar(a)+bar(b))xx(bar(a)-bar(b)) and unit vector perpendicular to both bar(a)+bar(b)andbar(a)-bar(b)

If bar(a)=bar(i)+4bar(j), bar(b)=2bar(i)-3bar(j) and bar(c)=5bar(i)+9bar(j)" then "bar(c)=

If bar(a)=bar(i)+bar(j)+bar(k) and bar(b)=2bar(i)-3bar(j)-bar(k) , find the unit vector in the direction of bar(a)+bar(b) .

Let bar(a) = 2bar(i) +4bar(j)-5bar(k), bar(b) = bar(i)+bar(j)+bar(k), bar(c ) = bar(j)+2bar(k) . Find the unit vector in the opposite direction of a + b + c

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

If bar(a)= 2bar(i) - 3bar(j) + 5bar(k), bar(b)= - bar(i) + 4bar(j)+ 2bar(k) then find (bar(a) + bar(b)) xx (bar(a) - bar(b)) and unit vector perpendicular to both bar(a) + bar(b) " & " bar(a)- bar(b) .

If bar(a) = 2bar(i) - 3bar(j) + 5bar(k), bar(b) = -bar(i) + 4bar(j) + 2bar(k) then find bar(a) xx bar(b) and unit vector perpendicular to both bar(a), bar(b) [-26bar(i) - 9bar(j) + 5bar(k), +- 1/(sqrt(782))26bar(i)+9bar(j)-5bar(k)) .

Show that bar(a)=bar(i)+2bar(j)+bar(k), bar(b)=2bar(i)+bar(j)+3bar(k) and bar(c)=bar(i)+bar(k) are linearly independent.

Let bar(a) = bar(i)+2bar(j)+3bar(k) and bar(b) = 3bar(i)+bar(j) . Find the unit vector in the direction of bar(a)+bar(b) .