Home
Class 12
MATHS
IF overlinea,overlineb,overlinec are non...

IF `overlinea,overlineb,overlinec` are noncoplanar, find the point of intersection of the line passing through the points `2overlinea+3overlineb-overlinec,3overlinea+4overlineb-2overlinec` with the line joining the points `overlinea-2overlineb+3overlinec,overlinea-6overlineb+6overlinec`

Promotional Banner

Topper's Solved these Questions

  • IPE:MARCH-2019(TS)

    SRISIRI PUBLICATION|Exercise SECTION - C|7 Videos
  • IPE:MARCH-2019(TS)

    SRISIRI PUBLICATION|Exercise SECTION-A|9 Videos
  • IPE:MARCH-2019(TS)

    SRISIRI PUBLICATION|Exercise SECTION - A|10 Videos
  • IPE:MARCH-2019(AP)

    SRISIRI PUBLICATION|Exercise SECTION-C|6 Videos
  • IPE:MAT-2019(AP)

    SRISIRI PUBLICATION|Exercise IPE:MAY-2019(AP) (MATHS-1A)|22 Videos

Similar Questions

Explore conceptually related problems

Find the equation of the line passing through the points (1,-1) and (2,3).

IF overlinea=overlinei-2overlinej-3overlinek,overlineb=2overlinei+overlinej-overlinek and overlinec=overlinei+3overlinej-2overlinek ,find overlinea.(overlinebtimesoverlinec) .

Find the inclination of the line passing through te points (4,2sqrt(3)),(1,sqrt(3))

IF overlinea,overlineb,overlinec are non-coplanar, then prove that the points with position vectors 2overlinea+3overlineb-overlinec,overlinea-2overlineb+3overlinec,3overlinea+4overlineb-2overlinec,overlinea-6overlineb+6overlinec are coplanar.

Find the points of trisection of the line segment joining the points (5,-6), (-3,4).

IF overlinea+overlineb+overlinec=overline0,|overlinea|=3|overlineb|=5 and |overlinec|=7 , then find the between overline a and overlineb .

Let overlinea=overlinei+2overlinej+3overlinek & overlineb=3overlinei+overlinej . Find a unit vector in the direction of overlinea+overlineb

IF overlinea=2overlinei-overlinek,overlineb=-overlinei+2overlinej-4overlinek,overlinec=overlinei+overlinej+overlinek then find (overlineatimesoverlineb).(overlinebtimesoverlinec)

If bar(a), bar(b), bar(c) are noncoplanar, find the point of intersection of the line passing through the points 2bar(a)+3bar(b)-bar(c), 3bar(a)+4bar(b)-2bar(c) with the line joining the points bar(a)-2bar(b)+3bar(c) and bar(a)-6bar(b)+6bar(c) .