Home
Class 12
MATHS
Show that 1/r^2+1/r1^2+1/r2^2+1/r3^2=(a...

Show that `1/r^2+1/r_1^2+1/r_2^2+1/r_3^2=(a^2+b^2+c^2)/Delta^2`

Promotional Banner

Topper's Solved these Questions

  • IPE:MARCH-2019(TS)

    SRISIRI PUBLICATION|Exercise SECTION-A|9 Videos
  • IPE:MARCH-2019(TS)

    SRISIRI PUBLICATION|Exercise SECTION-B|7 Videos
  • IPE:MARCH-2019(TS)

    SRISIRI PUBLICATION|Exercise SECTION - B|7 Videos
  • IPE:MARCH-2019(AP)

    SRISIRI PUBLICATION|Exercise SECTION-C|6 Videos
  • IPE:MAT-2019(AP)

    SRISIRI PUBLICATION|Exercise IPE:MAY-2019(AP) (MATHS-1A)|22 Videos

Similar Questions

Explore conceptually related problems

Show that r r_1 r_2 r_3 = Delta^2

In Delta ABC, 1/r_1^2+1/r_2^2+1/r_3^2+1/r^2 =

Prove that 4 (r_1 r_2 + r_2 r_3 + r_3 r_1) = (a+b+c)^2

Show that rr_(1)r_(2)r_(3)=Delta^(2)

In Delta ABC, r_1^2+r_2^2+r_3^2+r^2=

In Delta ABC , (1)/(r^(2)) + (1)/( r_1^(2)) +(1)/( r_2^(2)) + (1)/(r_3^(2)) =

In Delta ABC, Delta^2/(a^2+b^2+c^2) {1/r_1^2+1/r_2^2+1/r_3^2+1/r^2}=

If p_1,p_2,p_3 are the altitudes of a triangle ABC from the vertices A,B,C respectively , then with the usual notation, 1/(r_1^2)+1/(r_2^2)+1/(r_3^2)+1/(r^2)=