Home
Class 12
MATHS
Prove that ^n C0+^n C3+^n C6+=1/3(2^n+2...

Prove that `^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3)` .

Text Solution

Verified by Experts

Consider `(1+x)^(n) = .^(n)C_(0) + .^(n)C_(1)+.^(n)C_(2)+.^(n)C_(3)+.^(n)C_(4)+.^(n)C_(5)+.^(n)C_(6)+"....."`
`(1+omega)^(n) = .^(n)C_(0)+.^(n)C_(1)omega+.^(n)C_(2)omega^(2)+.^(n)C_(3)omega^(3)+.^(n)C_(4)omega^(4)+.^(n)C_(5)omega^(5)+.^(n)C_(6)omega^(6)+"......"`
`= .^(n)C_(0)+.^(n)C_(1)omega+.^(n)C_(2)omega^(2)+.^(n)C_(3)+.^(n)C_(4)omega+.^(n)C_(5)omega^(2)+.^(n)C_(6)+"......"`
`(1+omega^(3))^(n)= .^(n)C_(0)+.^(n)C_(1)omega^(2)+.^(n)C_(2)omega^(4)+.^(n)C_(3)omega^(6) +.^(n)C_(4)omega^(8)+.^(n)C_(5)omega^(10)+.^(n)C_(6)omega^(12)+"....."`
`= .^(n)C_(0)+.^(n)C_(1)omega^(2)+.^(n)C_(2)omega+.^(n)C_(3)+.^(n)C_(4)omega^(2)+.^(n)C_(5)omega + .^(n)C_(6)+"..."`
`:. 2^(n) +(1+omega)^(n)+(1+omega^(2))^(n) = 3(.^(n)C_(0)+.^(n)C_(3)+.^(n)C_(6)+".....")`
Now, `2^(n)+(1+omega)^(n)+(1+omega^(2))^(n)=2^(n)+2Re((1+omega)^(n))`
`= 2^(n) +2Re(1/2-i'(sqrt(3))/(2))^(n)`
`= 2^(n)+2Re(cos'(pi)/(3)-isin'(pi)/(3))^(n)`
`= 2^(n)+2cos'(npi)/(3)`
Hence, `.^(n)C_(0)+.^(n)C_(3)+.^(n)C_(6)+"...."=1/3(2^(n)+2cos'(npi)/(3))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.3|7 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that ^nC_(0)+^(n)C_(3)+^(n)C_(6)+...=(1)/(3)(2^(n)+2cos(n pi)/(3))

Prove that: ^(2n)C_0-3.^(2n)C_1+3^2.^(2n)C_2-..+(-1)^(2n) ..3^(2n)^(2n)C_(2n)=4^n for all value of N

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)