Home
Class 12
MATHS
Find the value of ^4n C0+^(4n)C4+^(4n)C8...

Find the value of `^4n C_0+^(4n)C_4+^(4n)C_8++""^(4n)C_(4n)` .

Text Solution

Verified by Experts

The correct Answer is:
`2^(4n-2)+(-1)^(n)2^(2n-1)`

We have,
`.^(4n)C_(0) + .^(4n)C_(2)x^(2)+.^(4n)C_(4)x^(4)+"…."+.^(4n)C_(4n)x^(4n)`
`= 1/2[(1+x)^(4n) +(1-x)^(4n)]`
Putting `x = 1` and `x= i`, we get
`.^(4n)C_(0) + .^(4n)C_(2) + .^(4n)C_(4) + "……" + .^(4n)C_(4n)=1/2[2^(4n)]`
and `.^(4n)C_(0) - .^(4n)C_(2) + .^(4n)C_(4) - "....." + .^(4n)C_(4n)`
`= 1/2[(1+i)^(4n)+(1-i)^(4n)]`
Thus, `2[.^(4n)C_(0) + .^(4n)C_(4)+"......"+.^(4n)C_(4n)] = 2^(4n-1) + 1/2[sqrt(2)(cos'(pi)/(4)- isin'(pi)/(4))]^(4n)`
`= 2^(2n) (cosnpi + isin npi)+2^(2n) (cos npi - i sin npi)`
`= 2^(2n+1) cos n pi=2^(2n+1)(-1)^(n)`
`:. 2[.^(4n)C_(0) + .^(4n)C_(4) + "....." + .^(4n)C_(4n)] = 2^(4n-1) + 1/2 2^(2n+1)(-1)^(n)`
`rArr .^(4n)C_(0) + .^(4n)C_(4) + "....." + .^(4n)C_(4n) = 2^(4n-2) + (-1)^(n)2^(2n-1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.3|7 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Find the value of ^4nC_(0)+^(4n)C_(4)+^(4n)C_(8)+...+^(4n)C_(4n)

Find the sum ^(n)C_(0)+^(n)C_(4)+^(n)C_(8)+...

Find n if ""^(n)C_(4)=""^(n)C_(6)

The value of |1 1 1\ ^n C_1\ ^(n+2)C_1\ ^(n+4)C_1\ ^n C_2\ ^(n+2)C_2\ ^(n+4)C_2| is (a) 2 (b) 4 (c) 8 (d) n^2

If ""^(n)C_(7)=""^(n)C_(5) , find ""^(n)C_(4) .

The value of |111^(n)C_(1)^(n+2)C_(1)^(n+4)C_(1)^(n)C_(2)^(n+2)C_(2)^(n+4)C_(2)| is

(i) If .^(n)C_(18)=.^(n)C_(12) then find the value of .^(32)C_(n) . (ii) If .^(10)C_(r)=.^(10)C_(r+4) then find the value of .^(5)C_(r) .

Find .^(n)C_(3) , if .^(n)C_(7)=.^(n)C_(4) .