Home
Class 12
MATHS
Prove that underset(rles)(underset(r=0)o...

Prove that `underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1`.

Text Solution

Verified by Experts

`underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum)).^(n)C_(s).^(s)C_(r)=underset(s=1)overset(n)sum.^(n)C_(s)(.^(s)C_(0)+.^(s)C_(1)+.^(s)C_(2)+"....."+.^(s)C_(s))`
`= underset(s=1)overset(n)sum.^(n)C_(s)2^(s)`
`= underset(s=0)overset(n)sum.^(n)C_(s)2^(s)-.^(n)C_(0)2^(0)`
`= (1+2)^(n)-1`
`= 3^(n) - 1`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.3|7 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

underset(r=0)overset(n-1)(sum)(.^(n)C_(r))/(.^(n)C_(r)+.^(n)C_(r+1)) equals

Prove that sum_(r=0)^(s)sum_(s=1)^(n)C_(s)^(n)C_(r)=3^(n)-1

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The value of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum),C_(r),C_(S) is

If k=underset(r=0)overset(n)(sum)(1)/(.^(n)C_(r)) , then underset(r=0)overset(n)(sum)(r)/(.^(n)C_(r)) is equal to