Home
Class 12
MATHS
If p + q = 1 then, show that sum(r=0)^...

If `p + q = 1` then, show that
`sum_(r=0)^(n) r^(2)""^(n)c_(r)p^(r)q^(n-r) = npq+n^(2)p^(2)`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sumr^(2).^(n)C_(r)p^(r)q^(n-r)`
`= underset(r=0)overset(n)sumnr.^(n-1)C_(r-1)p^(r)q^(n-r)`
`= n underset(r=0)overset(n)sum[(r-1)+1)]^(n-1)C_(r-1)p^(r)q^(n-r)`
`= n underset(r=0)overset(n)sum[(r-1)^(n-1)C_(r-1)+.^(n+1)C_(r-1)]p^(r)q^(n-r)`
`= n underset(r=0)overset(n)sum[(n-1).^(n-2)C_(r-1)p^(r-2)q^(n-r)+np underset(r=0)overset(n)sum.^(n-1)C_(r-1)p^(r-1)]q^(n-r)`
`= p^(2)n(n-1)(p+q)^(n-2)+np(p+q)^(n-1)`
`=p^(2)n(n-1)+np`
`=p^(2)n^(2)+np(1-p)`
`= p^(2)n^(2)+npq`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If p+q=1, then show that sum_(r=0)^(n)r^(n)C_(r)p^(r)q^(n-r)=npq+n^(2)p^(2)

If p+q=1 then show that sum_(r=0)^(n)r^(2)C_(r)p^(r)q^(n-r)=npq+n^(2)p^(2)

If p+q=1, then value of sum_(r=0)^(n)r^(2)C(n,r)p^(r)q^(n-r) is (1)npq(2)np(1+q) (3) n^(2)p^(2)+npq(4)np^(2)+npq

Evaluate : sum_(r = 1)^(n) ""^(n)C_(r) 2^r

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .