Home
Class 12
MATHS
Prove that 1-^n C1(1+x)/(1+n x)+^n C2(1+...

Prove that `1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+`

Text Solution

Verified by Experts

`S = 1 - .^(n)C_(1)((1+x)/(1+nx))+.^(n)C_(2)(1+2x)/((1+nx)^(2))+"...."`
`=underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r)((1+rx))/((1+nx)^(r))`
`=underset(r=0)overset(n)sum(-1)^(r)[(.^(n)C_(r))/((1+nx)^(r))+(.^(n)C_(r)rx)/((1+nx)^(r))]`
`= underset(r=0)overset(n)sum.^(n)C_(r)(-(1)/(1+nx))^(r)+xunderset(r=0)overset(n)sum(n..^(n-1)C_(r-1))/((1+nx)^(r)) (-1)^(r)`
`= [1-1/(1+nx)]^(n)-((nx)/(1+nx))underset(r=0)overset(n)sum.^(n-1)C_(r-1)(-(1)/(1+nx))^(r-1)`
`=[1-(1)/(1+nx)]^(n)-((nx)/(1+nx))[1-(1)/(nx)]^(n-1)`
`= [1-(1)/(1+nx)]^(n-1)[1-(1)/(1+nx)-(nx)/(1+x)]=0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that 1-^(n)C_(1)(1+x)/(1+nx)+^(n)C_(2)(1+2x)/((1+nx)^(2))-^(n)C_(3)(1+3x)/((1+nx)^(3))+

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " + 3^(2) *C_(3) + …+ n^(2) *C_(n) 1^(2)*C_(1) + 2^(2) *C_(2) = n(n+1)* 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , show that C_(1) - (C_(2))/(2) + (C_(3))/(3) - …(-1)^(n-1) (C_(n))/(n) = 1 + (1)/(2) + (1)/(3) + …+ (1)/(n) .

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + (C_1)/(2) + (C_2)/(3) + ……. + (C_n)/(n+1) = (2^(n+1) -1)/(n+1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

Prove that the coefficient of x^(n) in the expansion of (1)/((1-x)(1-2x)(1-3x))is(1)/(2)(3^(n+2)-2^(n+3)+1)