Home
Class 12
MATHS
Prove that ^10 C1(x-1)^2-^(10)C2(x-2)^2+...

Prove that `^10 C_1(x-1)^2-^(10)C_2(x-2)^2+^(10)C_3(x-3)^2+-^(10)C_(10)(x-10)^2=x^2`

Text Solution

Verified by Experts

`S = .^(10)C_(1)(x-1)^(2).^(10)C_(2)(x-2)^(2)+.^(10)C_(3)(x-3)^(2)+"...."-.^(10)C_(10)(x-10)^(10)`
`= underset(r=1)overset(10)sum(-1)^(r+1).^(10)C_(r)(x-r)^(2)`
`= underset(r=1)overset(10)(-1)^(r+1).^(10)C_(r)(x^(2) - 2xr+r^(2))`
`= underset(r=1)overset(10)sum(-1)^(r+1)C_(r)(x^(2)) - 2x underset(r=1)overset(10)sum(-1)^(r+1).^(10)C_(r)r + underset(r=1)overset(10)sum(-1)^(r+1).^(10)C_(r)r^(2)`
`= x^(2) underset(r=1)overset(10)sum (-1)^(r+1) .^(10)C_(r) - 2x(0) + 0`
`=x^(2)(.^(10)C_(1) - .^(10)C_(2) + .^(10)C_(3)-.^(10)C_(4)+"...."-.^(10)C_(10))`
`= x^(2)(1) = x^(2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that ^10C_(1)(x-1)^(2)-^(10)C_(2)(x-2)^(2)+^(10)C_(3)(x-3)^(2)+...-^(10)C_(10)(x-10)^(2)=

Let X=(^(10)C_(1))^(2)+2(^(10)C_(2))^(2)+3(^(10)C_(3))^(2)+...+10(^(10)C_(10))^(2) where ^(10)C_(r),r in{1,2,;10} denote binomial coefficients.Then,the value of (1)/(1430)X is

^10(C_(0))^(2)-^(10)(C_(1))^(2)+^(10)(C_(2))^(2)-......-(^(10)C_(9))^(2)+(^(10)C_(10))^(2)=

2.^(10)C_(0)-^(10)C_(1)-^(10)C_(2)+2*^(10)C_(3)-^(10)C_(4)-^(10)C_(5)+2*^(10)C_(6)-^(10)C_(7)-^(10)C_(8) +2*^(10)C_(9)-^(10)C_(10)=

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is (A) 2^(21) - 2^(11) (B) 2^(21) - 2^(10) (C) 2^(20) - 2^(9) (D) 2^(20) - 2^(10)

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

Prove that 3*""^10C_0+3^2*(""^10C_1)/2+3^3*(""^10C_2)/3+...3^11*(""^10C_10)/11=(4^11-1)/11