Home
Class 12
MATHS
Prove that 1/(n+1)=(^n C1)/2-(2(^n C2))/...

Prove that `1/(n+1)=(^n C_1)/2-(2(^n C_2))/3+(3(^n C_3))/4-+(-1)^(n+1)(n(^n C_n))/(n+1)` .

Text Solution

Verified by Experts

`S = (.^(n)C_(1))/(2)-(2(.^(n)C_(3)))/(3)+(3(.^(n)C_(3)))/(4)"...."+(-1)^(n+1)(n(.^(n)C_(n)))/(n+1)`
` = underset(r=1)overset(n)sum (r.^(n)C_(r))/((r+1))(-1)^(r+1)`
`= underset(r=1)overset(n)sum r(.^(n+1)C(r+1))/(n+1)(-1)^(r+1)`
`= 1/(n+1) underset(r=1)overset(n)sum [(r+1).^(n+1)C_(r+1)(-1)^(r+1)-.^(n+1)C_(r+1)(-1)^(r+1)]`
`= (1)/(n+1)underset(r=1)overset(n)sum[-(n+1).^(n)C_(r)(-1)^(r)-.^(n+1)C_(r+1)(-1)^(r+1)]`
`= -[-.^(n)C_(2)-.^(n)C_(3)+"...."+(-1)^(n).^(n)C_(n)]`
` - 1/(n+1)[.^(n+1)C_(2) - .^(n+1)C_(3)+".....(-1)^(n+1).^(n+1)C_(n+1)]`
`= - [(1-1)^(n)-1]-(1)/(n+1)[(1-1)^(n+1) - .^(n+1)C_(0)+.^(n+1)C_(1)]`
` = 1 - (1)/(n+1)[(n+1)-1]`
`1 - (n)/(n+1)= (1)/(n+1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that (1)/(n+1)=(nC_(1))/(2)-(2(^(n)C_(2)))/(3)+(3(^(n)C_(3)))/(4)-...+(-1)^(n+1)(n(^(n)C_(n)))/(n+1)

Prove that (C_(1))/(1)-(C_(2))/(2)+(C_(3))/(3)-(C_(4))/(4)+...+((-1)^(n-1))/(n)C_(n)=1+(1)/(2)+(1)/(3)+...+(1)/(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

if (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n) , then prove that (.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))= Sum of first n natural numbers.

Prove that (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"....."+= (2^(n))/(n+1)

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

Prove that C_(1)^(2)-2*C_(2)^(2)+3*C_(3)^(2)-…-2n*C_(2n)^(2)=(-1)^(n)n*C_(n)

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)