Home
Class 12
MATHS
Prove that C0 – 2^2 C1 + 3² C2 – 4^2 C3 ...

Prove that `C_0 – 2^2 C_1 + 3² C_2 – 4^2 C_3 + ... +(-1)^n (n + 1)^2 C_n = 0` where `C_r = nC_r`

Text Solution

Verified by Experts

`S=C_(0)-2^(2)C_(1)+3^(2)C_(2)-"....."+(-1)^(n)(n+1)^(2)C_(n)`
`T_(r) = (-1)^(r)r^(2).^(n)C_(r)`
`= (-1)^(r)r(r^(n)C_(r))`
`= (-1)^(r)r(n^(n-1)C_(r-1))`
`=n(-1)^(r)((r-1)+1)(.^(n-1)C_(r-1))`
`=n(-1)^(r)((r-1).^(n-1)C_(r-1)+.^(n-1)C_(r-1))`
`= n(-1)^(r)((n-1)^(n-2)C_(r-2)+.^(n-1)C_(r-1))`
`= n(n-1).^(n-2)C_(r-2)(-1)^(r-2)-n^(n-1)C_(r-1)(-1)^(r-1)`
`rArr S = underset(r=0)overset(n)sumT_(r)`
`= n(n-1)(1-1)^(n-2)-n(1-1)^(n-1)`
`=0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

Prove that C_(0)-2^(2)C_(1)+3^(2)C_(2)-4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)xx C_(n)=0 where C_(r)=^(n)C_(r)

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

Prove that "^nC_r + 2. ^nC_(r-1) + ^nC_(r-2) = ^(n+2)C_r

If (1+x)^n=C_0+C_1x+C_2x^2+…+C_nx^n show that C_1-2C_2+3C_3-4C_4+…+(-1)^(n-1) n.C_n=0 where C_r=^nC_r .

Prove that ^nC_0-^nC_1+^nC_2-^nC_3+....+(-1)^r ^C_r+....=(-1)^(r-1) ^(n-1)C_(r-1)

If n>2, then prove that C_(1)(a-1)-C_(2)xx(a-2)+...+(-1)^(n-1)C_(n)(a-n)=a, where C_(r)=^(n)C_(r)