Home
Class 12
MATHS
Find the value of sum(1leiltjlen-1) sum(...

Find the value of `sum_(1leiltjlen-1) sum_(1leiltjlen-1) (ij)""^(n)C_(i)""^(n)C_(j)`.

Text Solution

Verified by Experts

The correct Answer is:
`n^(2)((2^(2(n-1))-.^(2(n-1))C_(n-1))/(2))`

`S=underset(lleiltjlen-1)(sumsum)(i.^(n)C_(i))(j.^(n)C_(j))`
`=n^(2)underset(lleiltjlen-1)(sumsum).^(n-1)C_(i-1).^(n-1)C_(j-1)`
`= n^(2)((2^(2(n-1))-.^(2(n-1))C_(n-1))/(2))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Find the value of sum_(1<=i<=j<=n-1)(ij)^(n)c_(i)^(n)c_(j)

Find the sum sum_(0<=i

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +…+ C_(n) x^(n) , find the values of the following . sum_(i=0)^(n) sum_(j=0)^(n) (i+j) C_(i) C_(j)

The value of sum_(r=1)^(n+1)(sum_(k=1)^(n)C(k,r-1))=