Home
Class 12
MATHS
Prove that ^n C0^n C0-^(n+1)C1^n C1+^(n+...

Prove that `^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot`

Text Solution

Verified by Experts

`.^(n)C_(0).^(n)C_(0)-.^(n)C_(1).^(n+1)C_(1)+.^(n)C_(2).^(n+2)C_(2)-"....."`
`= .^(n)C_(0).^(n)C_(n)-.^(n)C_(1).^(n+1)C_(n)+.^(n)C_(2).^(n+2)C_(n)-"...."`
= Coefficient of `x^(n)` in `[.^(n)C_(0)(1+x)^(n)-.^(n)C_(1)(1+x)^(n+1)+.^(n)C_(2)(1+x)^(n+2)+"....."+(-1)^(n).^(n)C_(n)(1+x)^(2n)]`
= Coefficient of `x^(2)` in `(1+x)^(n)[.^(n)C_(0) - .^(n)C_(1)(1+x)+.^(n)C_(2)(1+x)^(2)-"......"+(-1)^(n).^(n)C_(n)(1+x)^(n)]`
= Coefficient of `x^(n)` in `(1+x)^(n)[1-(1+x)]^(n)`
= Coefficient of `x^(n)` in `(1+x)^(n) (-x)^(n)`
`= (-1)^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-1)C_(n)+^(n)C_(2)xx^(2n-2)C_(n)++(-1)^(n)sim nC_(n)^(n)C_(n)=1

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that: ^(2n)C_0-3.^(2n)C_1+3^2.^(2n)C_2-..+(-1)^(2n) ..3^(2n)^(2n)C_(2n)=4^n for all value of N

Prove that : ""^(n)C_(0).""^(2n)C_(n)-""^(n)C_(1).""^(2n-2)Cn_(n)+""^(n)C_(2).""^(2n-4)Cn_(n)+......=2^n