Home
Class 12
MATHS
Let S(1) = sum(j=1)^(10) j(j-1)""^(10)C...

Let `S_(1) = sum__(j=1)^(10) j(j-1)""^(10)C_(j), S_(2) = sum_(j=1)^(10)""^(10)C_(j)`, and `S_(3) = sum_(j=1)^(10) j^(2).""^(10)C_(j)`.
Statement 1 : `S_(3) xx 2^(9)`.
Statement 2 : `S_(1) = 90 xx 2^(8)` and `S_(2) = 10 xx 2^(8)`.

A

Statement 1 is false, statement 2 is true.

B

Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.

C

Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 2.

D

statement 1 is true, statement 2 is false.

Text Solution

Verified by Experts

The correct Answer is:
B

`S_(1)=underset(j=1)overset(10)sumj(j-1)(10!)/(j(j-1)(j-2)!(10-j)!)`
`= 90underset(j=1)overset(10)sum(8!)/((j-2)!(8-(j-2)!)`
`=90underset(j=2)overset(10)sum.^(8)C_(j-2)=90xx2^(8)`
`S_(1) = underset(j=1)overset(10)sum(10!)/(j(j-1)!(9-(j-1))!)`
`= 10underset(j=1)overset(10)sum(9!)/((j-1)!(9-(j-1))!)`
`10underset( j=1)overset(10)sum.^(9)C_(j-1)= 10 xx 2^(9)`
`S_(3) = underset(j=1)overset(10)sum[j(j-1)+j] .^(10)C_(j)`
`= underset(j=1)overset(10)sumj(j-1).^(10)C_(j)+underset(j=1)overset(10)sum..^(10)C_(j)`
`= 90xx2^(8)+10xx2^(9) = 55 xx 2^(9)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Single correct Answer|62 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Numerical)|24 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

So, statement-1 is also true. Stetement-2 is a correct expanation for statement-1. S_(1)= sum_(j=1)^(10) j (j -1)""^(10)C_(j),S_(2)= sum_(j=1)^(10)j.""^(10)C_(j) and S_(2)= sum_(j=1)^(10)j.""^(10)C_(j) . Statement-1 S_(3) = 50xx2^(9) . Statement-2 S_(1) = 90xx2^(8) and S_(2) = 10 xx 2^(8)

Let S_1=sum_(j=1)^(10)j(j-1)^(10)C_j ,""S_2=sum_(j=1)^(10)j""^(10)C_i("andS")_"3"=sum_(j=1)^(10)j^2""^("10")"C"_"j"dot Statement-1: S_3=""55xx2^9 Statement-2: S_1=""90xx2^8a n d""S_2=""10xx2^8 . (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1

Find the sum sum_(j=1)^(10)sum_(i=1)^(10)ixx2^(j)

S=sum_(i=1)^(n)sum_(j=1)^(i)sum_(k=1)^(j)1

Find the sum sum_(j=0)^n(^(4n+1)C_j+^(4n+1)C_(2n-j)) .