Home
Class 12
MATHS
For r = 0, 1,"…..",10, let A(r),B(r), an...

For `r = 0, 1,"…..",10`, let `A_(r),B_(r)`, and `C_(r)` denote, respectively, the coefficient of `x^(r )` in the expansion of `(1+x)^(10), (1+x)^(20)` and `(1+x)^(30)`. Then `sum_(r=1)^(10) A_(r)(B_(10)B_(r ) - C_(10)A_(r ))` is equal to

A

`B_(10) - C_(10)`

B

`A_(1)(B_(10)^(2) - C_(10)A_(10))`

C

0

D

`C_(10) - B_(10)`

Text Solution

Verified by Experts

The correct Answer is:
D

`A_(r), B_(r)`, and `C_(r)` denotes, respectively, the coefficient of `x^(r)` in the expansion of `(1+x)^(10), (1+x)^(20)` and `(1+x)^(30)`.
`:. A_(r) = .^(10)C_(r),B_(r)=.^(20)C_(r),C_(r)=.^(30)C_(r)`
`:. underset(r=1)overset(10)sumA_(r)(B_(10)B_(r)-C_(10)A_(r))`
`= B_(10)underset(r=1)overset(10)sumA_(r)B_(r)-C_(10)underset(r=1)overset(10)sum(A_(r))^(2)`
`= B_(10)underset(r=1)overset(10)sum.^(10)C_(r).^(20)C_(r)-C_(10)underset(r=1)overset(10)sum(.^(10)C_(r))^(2)`
`=B_(10)underset(r=1)overset(10)sum.^(10)C_(r).^(20)C_(20-r)-C_(10)underset(r=1)overset(10)sum(.^(10)C_(r))^(2)`
`= B_(10)[(underset(r=0)overset(10)sum.^(10)C_(r).^(20)C_(20-r))-1]-C_(10)[(underset(r=0)overset(10)sum(.^(30)C_(r))^(2))-1]`
`=B_(10)[.^(30)C_(2)-1]-C_(10)[.^(20)C_(10) - 1]`
`( :'.^(n)C_(0)^(2)+.^(n)C_(1)^(2)+.^(n)C_(2)^(2)+"...."+.^(n)C_(n)^(2)=.^(2n)C_(n))`
`=[B_(10).^(30)C_(20)-C_(10).^(20)C_(10)]+[C_(10)-B_(10)]`
`=[.^(20)C_(10).^(30)C_(20)-.^(30)C_(10).^(20)C_(10)] + [C_(10) - B_(10)]`
`= C_(10) - B_(10)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Single correct Answer|62 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Numerical)|24 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

For r=0,1,.....,10, let A_(r),B_(r),quad and C_(r) denote,respectively,the coefficient of x^(r) in the expansions of (1+x)^(10),(+x)^(20) and (1+x)^(30). Then sum A_(r)(B_(10)B_(r)-C_(10)A_(r)) is equal to

Let a_(r) denote the coefficient of x^(r) in the expansion of ( 1 + x)^(P + q) , then

sum_(r=0)^(10) (-1)^(r) (""^(10)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=0)^(9)(10C_(r))/(^^^10C_(r)+^(10)C_(r+1)) is equal to

The value sum_(r=1)^(10)r.(n_(C_(r)))/(n_(C_(r-1))) is equal to

If C_(r)=10C_(r), then sum_(r=1)^(10)C_(r-1)C_(r) is equal to

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to