Home
Class 12
MATHS
Let X=(\ ^(10)C1)^2+2(\ ^(10)C2)^2+3(\ ^...

Let `X=(\ ^(10)C_1)^2+2(\ ^(10)C_2)^2+3(\ ^(10)C_3)^2+\ ddot\ +10(\ ^(10)C_(10))^2` , where `\ ^(10)C_r` , `r in {1,\ 2,\ ddot,\ 10}` denote binomial coefficients. Then, the value of `1/(1430)\ X` is _________.

Text Solution

Verified by Experts

The correct Answer is:
D

`X = underset(r=1)overset(10)sumr.(.^(10)C_(r))^(2)= underset(r=1)overset(10)sumr..^(10)C_(r)..^(10)C_(r)`
`= 10. underset(r=1)overset(10)sum .^(9)C_(r-1)..^(10)C_(10-r) = 10..^(19)C_(9)`
Now, `(X)/(1430) = (10..^(19)C_(9))/(1430) = (.^(19)C_(9))/(143) = (.^(19)C_(9))/(11xx13)`
`= (19xx17xx16)/(8) = 19xx34 = 646`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Single correct Answer|62 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Numerical)|24 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Let X=(^(10)C_(1))^(2)+2(^(10)C_(2))^(2)+3(^(10)C_(3))^(2)+...+10(^(10)C_(10))^(2) where ^(10)C_(r),r in{1,2,;10} denote binomial coefficients.Then,the value of (1)/(1430)X is

"^10(C_0)^2 + "^10(C_1)^2 + "^10(C_2)^2 + ...... + ( "^10C_9)^2 + ( "^10C_10)^2=

^10(C_(0))^(2)-^(10)(C_(1))^(2)+^(10)(C_(2))^(2)-......-(^(10)C_(9))^(2)+(^(10)C_(10))^(2)=

Evaluate ""^(10)C_1 + ""^(10)C_2 + ""^(10)C_3 + ………+""^10C_10

Find the sum ^10C_(1)+^(10)C_(3)+^(10)C_(5)+^(10)C_(7)+^(10)C_(9)

Prove that ^10C_(1)(x-1)^(2)-^(10)C_(2)(x-2)^(2)+^(10)C_(3)(x-3)^(2)+...-^(10)C_(10)(x-10)^(2)=

Evaluate : 2^(10)C_(0)+(2^(2).^(10)C_(1))/(2)+(2^(3).^(10)C_(2))/(3)+ . . .+(2^(11).^(10)C_(10))/(11)

" 6.Find the value of "^(10)C_(5)+2*^(10)C_(4)+^(10)C_(3)