Home
Class 12
MATHS
If y=sqrt((1-cos2x)/(1+cos2x),)x in (0,p...

If `y=sqrt((1-cos2x)/(1+cos2x),)x in (0,pi/2)uu(pi/2,pi),` then find `(dy)/(dx)dot`

Text Solution

Verified by Experts

We have
`y=sqrt((1-cso2x)/(1+cos2x)),=sqrt((2sin^(2)x)/(2cos^(2)x))=sqrt(tan^(2)x)`
`=|tanx|," where "x in(0,(pi)/(2))cup((pi)/(2),pi)`
`={{:(tan x, x in(0,(pi)/(2)),),(-tan x, x in((pi)/(2),pi),):}`
`therefore" "(dy)/(dx)={{:(sec^(2)x",", x in(0,(pi)/(2)),),(-sec^(2) x",", x in((pi)/(2),pi),):}`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt((1-cos2x)/(1+cos2x)), where 0

If pi/2

int_(0)^( pi)(sqrt(1+cos2x))/(2)dx

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

Differentiate cos^(-1)(cos x),x in[0,2 pi]

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

Let 2y={(cot^(-1)(sqrt(3)cos x-sin x))/(cos x+sqrt(3)sin x))^(2) then (dy)/(dx) is equal to (A) x-(pi)/(6)(B)x+(pi)/(6)(C)2x-(pi)/(6)(D)2x-(pi)/(3)])

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), find the values of (dy)/(dx) at t=(pi)/(4) and t=(pi)/(3)