Home
Class 12
MATHS
y=sin^(-1)(x/(1+x^2))+cos^(-1)(x/(1+x^2)...

`y=sin^(-1)(x/(1+x^2))+cos^(-1)(x/(1+x^2)),` where `0

Text Solution

Verified by Experts

From tringular conversions,
`y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))`
`=tan^(-1)x+tan^(-1)x=2 tan^(-)x`
`therefore" "(dy)/(dx)=(2)/(1+x^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)(x/(sqrt(1+x^2)))+cos^(-1)(1/(sqrt(1+x^2))), 0

If y=sin^(-1)((1-x^(2))/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2))) find (dy)/(dx)

Differentiate sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2))), with respect to x, if x in(0,1) (ii) x in(-1,0)

Find the value of: tan((1)/(2)[(sin^(-1)(2x))/(1+x^(2))+(cos^(-1)(1-y^(2)))/(1+y^(2))]),|x| 0 and xy,|x| 0

If x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1) , then x_(1) + x_(2) is equal to

Prove that : tan(1/2){sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))}=(x+y)/(1-x y) , if |x| 0 and x y<1 .

Find the value of the following: tan((1)/(2))[sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-y^(2))/(1+y^(2)))],|x| 0 and xy<1

Prove that tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))}=(x+y)/(1-xy) , where |x| lt 1,y gt 0 and xy lt 1 .

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is