Home
Class 12
MATHS
Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/...

Find `(dy)/(dx)` for `y=tan^(-1)sqrt((a-x)/(a+x),)-a

Text Solution

Verified by Experts

`y=tan^(-1){sqrt((a-x)/(a+x))}," where " -a lt x lt a`
Substituting `x= a cos theta,` we get
`y=tan^(-1){sqrt((a-a cos theta)/(a+a cos theta))},`
`=tan^(-1){sqrt((1- cos theta)/(1+ cos theta))},`
`=tan^(-1){sqrt(tan^(2)""(theta)/(2))}`
`=tan^(-1)|tan""(theta)/(2)|`
Also, for `-a lt x lt a, -1 lt cos theta lt 1`
`"or "theta in (0,pi) or (theta)/(2) in (0, (pi)/(2))`
`therefore" "y=tan^(-1)|tan""(theta)/(2)|=tan^(-1)(tan""(theta)/(2))`
`=(theta)/(2)=(1)/(2) cos^(-1) ((x)/(a))`
`"or "(dy)/(dx)=-(1)/(2)xx(1)/(sqrt(1-(x^(2))/(a^(2))))(d)/(dx)((x)/(a))=-(1)/(2sqrt(a^(2)-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if y=tan^(-1)((sqrt(1+x^(2)-1))/(x)), where x!=0

Find the (dy)/(dx) of y=tan^(-1)((a x-b)/(b x+a))

Find (dy)/(dx) of y=tan^(-1)(x/(1+sqrt(1-x^2)))

Find (dy)/(dx)" if y"=sqrt(sin^(-1) sqrt(x)) .

Find the (dy)/(dx) of y=tan^(-1)((sqrt(x)-x)/(1+x^(3//2)))

Find the (dy)/(dx) of y=tan^(-1)(x/(sqrt(1-x^2)))

Find the (dy)/(dx) of y=tan^(-1)((sqrt(a)-sqrt(x))/(1+sqrt(a x)))

Find (dy)/(dx) of y=(sinx)^x+sin^(-1)sqrt(x) .

y=tan^(-1)sqrt((1-x)/(1+x))find(dy)/(dx)

y=tan^(-1)sqrt(x)then-(dy)/(dx)=