Home
Class 12
MATHS
If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x...

If `y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2])` and `0

Text Solution

Verified by Experts

`y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]," where "0lt x lt 1`
`=sin^(-1)[xsqrt(1-(sqrt(x))^(2))-sqrt(x)sqrt(1-x^(2))]`
`=sin^(-1)x-sin^(-1)sqrt(x)`
`[because sin^(-1) x-sin^(-1)y=sin^(-1)(xsqrt(1-y^(2))-ysqrt(1-x^(2)))]`
Differentiating w.r.t.x, we get
`(dy)/(dx)=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-(sqrt(x))^(2)))(d)/(dx)(sqrt(x))`
`=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-x))xx(1)/(2sqrt(x))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))) and 0

If y=sin^(-1)(x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))) and (dy)/(dx)=(1)/(2sqrt(x(1-x)))+p, then p,

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

underset0 If y=cos^(-1){x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))} and

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

Let f(x)=sin^(-1){xsqrt(1-x)-sqrt(x(1-x^(2))}}, AA 0le xle1 then f(x) is

If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -1 < x < 1, x!= 0 . Find dy/dx .