Home
Class 12
MATHS
If cosy=xcos(a+y), with cosa!=+-1, prove...

If `cosy=xcos(a+y),` with `cosa!=+-1,` prove that `(dy)/(dx)=(cos^2(a+y))/(sina)dot`

Text Solution

Verified by Experts

Given relation is cos y = x cos (a+y). Therefore,
`x=(cos y)/(cos (a+y))`
Differentaiting w.r.t.y, we get
`(dx)/(dy)=(d)/(dy)((cos y)/(cos (a+y)))`
`=((cos (a+y)(-sin y)- cos y (-sin (a+y)))/(cos^(2)(a+y)))`
`=((-cos (a+y) sin y + cos y sin (a+y))/(cos^(2) (a+y)))`
`=((sin (a+y-y))/(cos^(2)(a+y)))=(sin a)/(cos^(2)(a+y))`
`therefore" "(dy)/(dx)=(cos^(2)(a+y))/(sin a)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos quad yquad =quad xquad cosquad (a+y) with cos quad a!=+-1, prove that (dy)/(dx)=((cos^(2)(a+y))/(sin a))

x(dy)/(dx)=y-xcos^(2)(y/x)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If xcos(a+y)=cosy , then prove that (dy)/(dx)=(cos^(2)(a+y))/(sina) . Hence, show that sina(d^(2)y)/(dx^(2))+sin2(a+y)dy/dx=0 .