Home
Class 12
MATHS
Find the sum of the series 1+2x+3x^(2)+(...

Find the sum of the series `1+2x+3x^(2)+(n-1)x^(n-2))` using differentiation.

Text Solution

Verified by Experts

We know that `1+x+x^(2)+…+x^(n-1)=(1-x^(n))/(1-x).`
Differentiating both sides w.r.t.x, we get
`0+1+2x+3x^(2)+…+(n-1)x^(n-2)`
`=((1-x)(d)/(dx)(1-x^(n))-(1-x^(n))(d)/(dx)(1-x))/((1-x)^(2))`
`"or "1+2x+3x^(2)+...+(n-1)^(x-2)=(-(1-x)nx^(n-1)+(1-x^(n)))/((1-x)^(2))`
`"or "1+2x+3x^(2)+...+(n-1)^(x-2)=(-nx^(n-1)+(n-1)x^(n)+1)/((1-x)^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the series 1+3x+5x^(2)+7x^(2)+... to n terms.

Find the sum of the series 1xx n+2(n-1)+3xx(n-2)+...+(n-1)xx2+n xx1

Find the sum of the series 1+3x+5x^(2)+7x^(3)+...... upto n terms.

Find the sum of the series: 1.n+2.(n-1)+3.(n-2)+...+(n-1).2+n.1

Find the sum of series sum_(r=1)^(n)r.x^(r-1), using calculus.

If |x| lt 1 ,then the sum of the series 1 + 2x + 3x^(2) + 4x^(2) + ....infty will be

Find the sum to n terms of the series: 1+2x+3x^(2)+4x^(3)+......

Find the sum of the series 1+2^(2)x+3^(2)x^(2)+4^(2)x^(3)+"...."" upto "infty|x|lt1 .

it is known for x ne 1 that 1+x+x^(2)+"….."+x^(n-1) = (1-x^(n))/(1-x) , hence find the sum of the series S = 1+2x+3x^(2)+"….."+(n+1)x^(n) .