Home
Class 12
MATHS
If x y+y^2=tanx+y ,t h e nfin d(dy)/(dx)...

If `x y+y^2=tanx+y ,t h e nfin d(dy)/(dx)dot`

Text Solution

Verified by Experts

The given relation is `xy+y^(2)=tan x + y.`
Differentiating both sides with respect to x, we get
`(d)/(d)(xy)+(d)/(dx)(y^(2))=(d)/(dx(tan x) +(dy)/(dx)`
`"or "[y.1+x.(dy)/(dx)]+2y(dy)/(dx)=sec^(2) x+(dy)/(dx)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y=x^(tanx) then (dy)/(dx) is

Given that y=e^(tanx) , find (dy)/(dx) .

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

If x^(2y)=e^(x-y)," then "(dy)/(dx)=

If e^(y) +xy = e , the ordered pair ((dy)/(dx),(d^(2)y)/(dx^(2))) at x = 0 is equal to

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be

"If "x^(y)=e^(x-y)" then "(dy)/(dx)=