Home
Class 12
MATHS
sec(x+y) = xy...

`sec(x+y) = xy`

Text Solution

Verified by Experts

We have, sec (x+y)=xy
On differentiating both sides w.r.t x, we get
`sec (x+y)cdot tan (x+y) cdot (d)/(dx) (x+y) = x (dy)/(dx)+y`
`rArr overset(cdot)sec (x+y) cdot tan (x+y) cdot (1+(dy)/(dx))=x(dy)/(dx)+y`
`rArr (dy)/(dx)[sec (x+y)cdot tan (x+y)-x]`
`=y-sec (x+y)cdot. tan (x+y)`
`therefore (dy)/(dx)=(y-sec(x+y).tan (x+y))/(sec (x+y). tan (x+y)-x`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

cos(xy)=x+y

lim_ (x rarr0) ((x + y) sec (x + y) -y sec y) / (x)

(sec x sec y + tan x tan y) ^ (2) - (sec x tan y + tan x sec y) ^ (2) = 1 Prove it

If x:y::5:2, then (x ^(2) - xy + y ^(2))/( x ^(2) + xy + y ^(2)) = ?

cos (x + y), sin (x + y), - cos (x + y) sin (xy), cos (xy), sin (xy) sin2x, 0, sin2y] | = sin2 (x + y)

((ln (sec x + tan x)) / (cos x) dx = ((ln (sec y + tan y)) / (cos y) dy

sin(xy) + (x)/(y) = x^(2) - y