Home
Class 12
MATHS
If f(x)=|x|^(|sinx|), then find f^(prime...

If `f(x)=|x|^(|sinx|),` then find `f^(prime)(-pi/4)`

Text Solution

Verified by Experts

In the neighbourhood of `-pi//4,` we have
`f(x)=(-x)^(-sin x)=e^(-sin x log(-x))`
`"or "f'(x)=_(e)^(- sin x log(-x))(-cos cdot log (-x) -(sin x)/(x))`
`=(-x)^(-sin x)(-cos x cdotlog(-x)-(sin x)/(x))`
`"or "f'(pi//4)=((pi)/(4))^(1//sqrt(2))((-1)/(sqrt(2))log""(pi)/(4)+(4)/(pi)xx((-1)/(sqrt(2)))`
`=((pi)/(4))^(1sqrt(2))((sqrt(2))/(2)log""(4)/(pi)-(2sqrt(2))/(pi))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x|^(sin x|), then find f'(-(pi)/(4))

If f(x)=(|x|)^(|sin|), then f'((-pi)/(4)) is-

If f(x)=|x|^(|sinx|) , then f'((pi)/(4)) equals

If f(x)=sqrt(sinx)," find "f^(')(x) .

if f(x)=x+sinx , then find (2)/(pi^(2)).int_(pi)^(2pi)(f^(-1)(x)+sinx)dx

If f(x)=|cos x-sin x|, find f'((pi)/(6)) and f'((pi)/(3))

If f(x)= 2 sinx -3x^(4)+8 , then find f'(x) is

If f(x)=|cos x|, find f'((pi)/(4)) and f'((3 pi)/(4))

If f(x)=|cos x|, find f'((pi)/(4)) and f'((3 pi)/(4))